Freshwater Prawn Hatchery and Nursery Production

> Forrest Wynne Aquaculture Extension Specialist Graves County CES Office

Why Prawns?

 Freshwater- can be raised inland away from the coast

Not susceptible to common shrimp diseases

Environmentally sustainable

Trends in U.S. Shrimp Production and Consumption

Billions of Pounds of Shrimp

Macrobrachium rosenbergii

• The freshwater prawn is native to tropical countries along the Pacific ocean.

 Although freshwater as adults – they require salt water to reproduce.

• Widely cultured within its native range and has been shown to have culture potential even in temperate inland areas of the US.

Biology and Life History

Life History

- Prawns have a hard outer skeleton that is shed regularly for growth.
- Weight and size increases occur after each molt.
- Growth is incremental rather than continuous.

Adults

- Older juveniles and some adults often have a bluegreen or brown color.
- Color is related to the quality and type of diet.
- Adult males are larger than females. They are easily distinguished by larger heads and claws.

- At 80 °F, approximately 20 days are required for the eggs to hatch. Larvae swim upside down and tail first.
- Larvae cannot survive in freshwater beyond 2 days and must migrate to brackish water (10-14 ppt).
- Larvae undergo 11 molts before transforming into post-larvae, which takes 25-45 days.

Morphotypes

• Male

• Female

- Blue claw
- Orange claw
 Small male

- Open (Breeding)Berried (Eggs)
- Virgin

Orange Claw Male

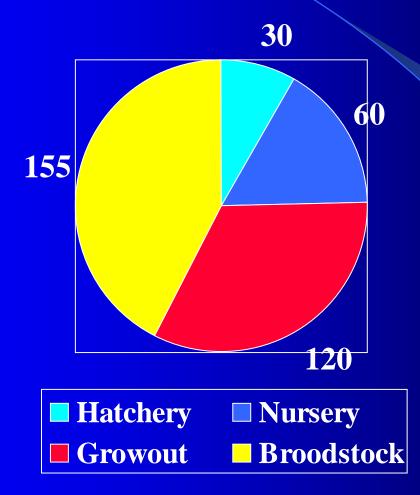
Temperate Production

• Production in temperate regions of the US has increased rapidly in recent years.

 Production includes four distinct phases; hatchery, nursery, growout, and broodstock holding.

• Hatchery, nursery and brood holding are generally conducted indoors.

Pond growout is conducted in the summer growing season (100-150 days).


Hatchery – March

• Nursery – April / May

• Growout – June – September

Broodstock – October - April

Production Cycle

Considering Shrimp Production?

 Skip the hatchery and possibly the nursery phase – purchase from supplier.

• As you become successful at pond growout consider a nursery.

Break-even on a hatchery >1 million PL.
 Knowledge intensive.

Hatchery Production

Broodstock Holding

- At pond harvest, broodstock are stocked in heated tanks and maintained throughout the winter.
- Broodstock are stocked at 1:4 male to female ratio in heated tanks at one prawn ft² or 7.5 gallons.

Larvae

- Egg development takes two weeks at 84° F, a 40 g female can produce approx. 20,000 larvae.
- Prawn larvae requires brackish water (12 ppt salt) for the 30 day larval period.
- Larvae are extremely small (<0.01 g) and are fed live food (*Artemia*) at frequent intervals.

Salt mixtures

 Commercially available sea water mixes are major expense in hatchery production, approximately \$30.00 to treat 450 gal.

Biofiltration

- 4-6 week break-in period to develop bacteria colonies.
- Requires daily maintenance for:
 - Solids removal
 - Ammonia / Nitrite monitoring.

Water Quality

Temperature 80-86°F
Salinity 12 ppt
Ammonia < 1 ppm
Nitrite < 0.5 ppm
Nitrate < 50 ppm
pH 6.5-8.5

Maintained at saturation (6-8 mg/L)

• Should Have Back-up Blower and Generator

Larval Collector

- The larval collector allows better control of stocking density in larval tanks.
- It is important to have larvae as close to the the same age as possible – no more than 2-3 days apart.

First Week

 Larvae are initially stocked in small tanks at high density (>1,000/L) for the first 6-10 days and fed Artemia twice a day.

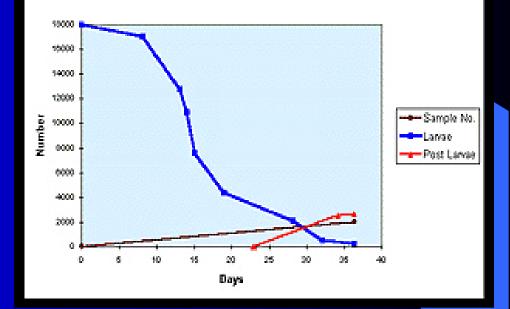
Artemia

- Prawn larvae require live feed - Artemia
- Artemia require 24 hours to hatch
- Artemia cost \$70/1b.

Second Stage

- After approx. 1 week, larvae are moved to larger tanks (450-1,000 gal) and the density reduced to 50-100/L.
- Supplemental feeding is initiated.

Supplemental Diet


- By day 10 larvae should be fed a supplemental diet. In addition to artemia.
- 11b. Squid or fish
- 4 eggs
- Tsp cod liver oil
- Tsp Vit C

Survival

- Survival in larval culture ranges from 0-50%!
- At 30 days, post-larvae are harvested and remaining larvae are sacrificed (<5%) when acclimated to freshwater.

Macrobrachium Larvae Survival

Nursery Production

Nursery

- Growth from 0.01g to 0.3g in 45 days.
- The nursery stage improves survival by stocking larger animals.
- Developed to reduce pond growout time in temperate production.

Nursery Period

- Beyond 60 days, the rate of mortality increases significantly and reaches maximum at 2.5g of animals per L.
- Following 30-60 days, juveniles should be >0.25g

Feeding

- Feed a commercial salmonid starter diet approx. 10% of biomass daily.
- Best to feed to satiation – observe feeding based on left over feed on tank bottom.

Recirculation Systems

Heating Water

- Heating the water is the major expense in culturing tropical animals in a temperate climate.
- Electric emersion heaters work well to maintain temperature but are expensive to operate.
- A building should be designed to have a sufficient heat source to maintain ambient temperature.

Recycle Systems

Primarily used to have control over the culture environment.

 The only option when culturing tropical animals outside their native range.

Efficient Feeding

• Proper feeding is the most critical aspect of managing a prawn nursery.

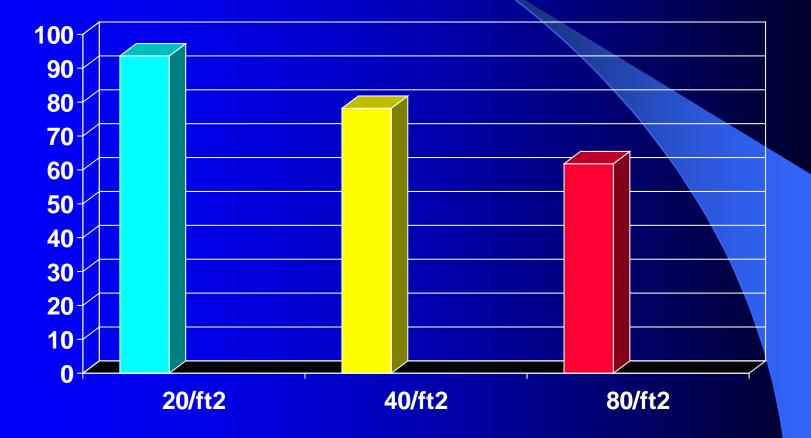
• If larvae or post-larvae are underfed they will eat each other. If they are overfed, water quality will deteriorate and they will die.

• Feed cost insignificant

– 20,000 juveniles for 60 days require approx. 25 lbs.

Round Tanks

- Small tanks may be advantageous for simplicity when stocking and harvesting.
- Large tanks more efficient


• 20,000 PLs per 1,000 gal.

Stocking Density?

- Survival during the nursery phase has been highly variable (40-100%).
- Juvenile prawns are territorial and cannibalistic and are limited by available two-dimensional space.
- Survival in nursery culture may be related to the amount of substrate provided.

Nursery Percent Survival number of shrimp stocked ft²

Economics of nursery to stock 1 acre pond

25,000 pls	@ \$0.03 each	\$750
from hatchery		
Utilities	\$75 per month	\$150
	\$25 for blower	
Feed	\$25/ 50lb. bag	\$50
		Costs \$950
Assuming 80%	Sell 20,000 @	Gross \$2,000
survival	\$0.10 each	Net \$1,050

Transport

Pond Stocking

 When the water temperatures are consistently > 68° F (early June) prawns are stocked in growout ponds at 12 - 30,000 per acre.

Stocking Density

 Densities of 12,000 – 32,000 acre depending on the desired size, total ponds, and use of substrate.

• Generally lighter densities produce larger prawns, where higher densities produce more total pounds.

 Increased feeding rates and inclusion of substrate have consistently achieved 2,000 lbs/acre of 40g animals in small research ponds.